The easiest way to load a configuration is by making sure it is structured just as the Machine
constructor. Your first level elements should be name
, transitions
, states
and so on. When your yaml/json configuration is loaded, you can add your model programatically and pass the whole object to Machine
.
In [ ]:
from transitions import Machine
import json
class Model:
def say_hello(self, name):
print(f"Hello {name}!")
# import json
json_config = """
{
"name": "MyMachine",
"states": [
"A",
"B",
{ "name": "C", "on_enter": "say_hello" }
],
"transitions": [
["go", "A", "B"],
{"trigger": "hello", "source": "*", "dest": "C"}
],
"initial": "A"
}
"""
model = Model()
config = json.loads(json_config)
config['model'] = model # adding a model to the configuration
m = Machine(**config) # **config unpacks arguments as kwargs
assert model.is_A()
model.go()
assert model.is_B()
model.hello("world") # >>> Hello world!
assert model.state == 'C'
This example uses pyyaml.
In [ ]:
from transitions import Machine
import yaml
class Model:
def say_hello(self, name):
print(f"Hello {name}!")
yaml_config = """
---
name: "MyMachine"
states:
- "A"
- "B"
- name: "C"
on_enter: "say_hello"
transitions:
- ["go", "A", "B"]
- {trigger: "hello", source: "*", dest: "C"}
initial: "A"
"""
model = Model()
config = yaml.safe_load(yaml_config)
config['model'] = model # adding a model to the configuration
m = Machine(**config) # **config unpacks arguments as kwargs
assert model.is_A()
model.go()
assert model.is_B()
model.hello("world") # >>> Hello world!
assert model.state == 'C'
A default Machine
does not keep track of its configuration but transitions.extensions.markup.MarkupMachine
does.
MarkupMachine
cannot just be used to export your configuration but also to visualize or instrospect your configuration conveniently.
Is is also the foundation for GraphMachine
. You will see that MarkupMachine
will always export every attribute even unset values. This makes such exports visually cluttered but easier to automatically process.
If you plan to use such a configuration with a 'normal' Machine
, you should remove the models
attribute from the markup since Machine
cannot process it properly.
If you pass the (stored and loaded) configuration to another MarkupMachine
however, it will attempt to create and initialize models for you.
In [ ]:
#export
from transitions.extensions.markup import MarkupMachine
import json
import yaml
class Model:
def say_hello(self, name):
print(f"Hello {name}!")
model = Model()
m = MarkupMachine(model=None, name="ExportedMachine")
m.add_state('A')
m.add_state('B')
m.add_state('C', on_enter='say_hello')
m.add_transition('go', 'A', 'B')
m.add_transition(trigger='hello', source='*', dest='C')
m.initial = 'A'
m.add_model(model)
model.go()
print("JSON:")
print(json.dumps(m.markup, indent=2))
print('\nYAML:')
print(yaml.dump(m.markup))
config2 = json.loads(json.dumps(m.markup)) # simulate saving and loading
m2 = MarkupMachine(markup=config2)
model2 = m2.models[0] # get the initialized model
assert model2.is_B() # the model state was preserved
model2.hello('again') # >>> Hello again!
assert model2.state == 'C'
transitions
with django models?In this comment proofit404 provided a nice example about how to use transitions
and django together:
In [ ]:
from django.db import models
from django.db.models.signals import post_init
from django.dispatch import receiver
from django.utils.translation import ugettext_lazy as _
from transitions import Machine
class ModelWithState(models.Model):
ASLEEP = 'asleep'
HANGING_OUT = 'hanging out'
HUNGRY = 'hungry'
SWEATY = 'sweaty'
SAVING_THE_WORLD = 'saving the world'
STATE_TYPES = [
(ASLEEP, _('asleep')),
(HANGING_OUT, _('hanging out')),
(HUNGRY, _('hungry')),
(SWEATY, _('sweaty')),
(SAVING_THE_WORLD, _('saving the world')),
]
state = models.CharField(
_('state'),
max_length=100,
choices=STATE_TYPES,
default=ASLEEP,
help_text=_('actual state'),
)
@receiver(post_init, sender=ModelWithState)
def init_state_machine(instance, **kwargs):
states = [state for state, _ in instance.STATE_TYPES]
machine = instance.machine = Machine(model=instance, states=states, initial=instance.state)
machine.add_transition('work_out', instance.HANGING_OUT, instance.HUNGRY)
machine.add_transition('eat', instance.HUNGRY, instance.HANGING_OUT)
transitions
memory footprint is too large for my Django app and adding models takes too long.We analyzed the memory footprint of transitions
in this discussion and could verify that the standard approach is not suitable to handle thousands of models. However, with a static (class) machine and some __getattribute__
tweaking we can keep the convenience loss minimal:
In [ ]:
from transitions import Machine
from functools import partial
from mock import MagicMock
class Model(object):
machine = Machine(model=None, states=['A', 'B', 'C'], initial=None,
transitions=[
{'trigger': 'go', 'source': 'A', 'dest': 'B', 'before': 'before'},
{'trigger': 'check', 'source': 'B', 'dest': 'C', 'conditions': 'is_large'},
], finalize_event='finalize')
def __init__(self):
self.state = 'A'
self.before = MagicMock()
self.after = MagicMock()
self.finalize = MagicMock()
@staticmethod
def is_large(value=0):
return value > 9000
def __getattribute__(self, item):
try:
return super(Model, self).__getattribute__(item)
except AttributeError:
if item in self.machine.events:
return partial(self.machine.events[item].trigger, self)
raise
model = Model()
model.go()
assert model.state == 'B'
assert model.before.called
assert model.finalize.called
model.check()
assert model.state == 'B'
model.check(value=500)
assert model.state == 'B'
model.check(value=9001)
assert model.state == 'C'
assert model.finalize.call_count == 4
Currently, transitions
has no such callback. This example from the issue discussed here might give you a basic idea about how to extend Machine
with such a feature:
In [ ]:
from transitions.core import Machine, State, Event, EventData, listify
class DuringState(State):
# add `on_during` to the dynamic callback methods
# this way on_during_<state> can be recognized by `Machine`
dynamic_methods = State.dynamic_methods + ['on_during']
# parse 'during' and remove the keyword before passing the rest along to state
def __init__(self, *args, **kwargs):
during = kwargs.pop('during', [])
self.on_during = listify(during)
super(DuringState, self).__init__(*args, **kwargs)
def during(self, event_data):
for handle in self.on_during:
event_data.machine.callback(handle, event_data)
class DuringEvent(Event):
def _trigger(self, model, *args, **kwargs):
# a successful transition returns `res=True` if res is False, we know that
# no transition has been executed
res = super(DuringEvent, self)._trigger(model, *args, **kwargs)
if res is False:
state = self.machine.get_state(model.state)
event_data = EventData(state, self, self.machine, model, args=args, kwargs=kwargs)
event_data.result = res
state.during(event_data)
return res
class DuringMachine(Machine):
# we need to override the state and event classes used by `Machine`
state_cls = DuringState
event_cls = DuringEvent
class Model:
def on_during_A(self):
print("Dynamically assigned callback")
def another_callback(self):
print("Explicitly assigned callback")
model = Model()
machine = DuringMachine(model=model, states=[{'name': 'A', 'during': 'another_callback'}, 'B'],
transitions=[['go', 'B', 'A']], initial='A', ignore_invalid_triggers=True)
machine.add_transition('test', source='A', dest='A', conditions=lambda: False)
assert not model.go()
assert not model.test()
This has been a feature request here. We'd encourage to write a wrapper which converts a condensed statement into individual condition-based transitions. However, a less expressive version could look like this:
In [ ]:
from transitions import Machine, Transition
from six import string_types
class DependingTransition(Transition):
def __init__(self, source, dest, conditions=None, unless=None, before=None,
after=None, prepare=None, **kwargs):
self._result = self._dest = None
super(DependingTransition, self).__init__(source, dest, conditions, unless, before, after, prepare)
if isinstance(dest, dict):
try:
self._func = kwargs.pop('depends_on')
except KeyError:
raise AttributeError("A multi-destination transition requires a 'depends_on'")
else:
# use base version in case transition does not need special handling
self.execute = super(DependingTransition, self).execute
def execute(self, event_data):
func = getattr(event_data.model, self._func) if isinstance(self._func, string_types) \
else self._func
self._result = func(*event_data.args, **event_data.kwargs)
super(DependingTransition, self).execute(event_data)
@property
def dest(self):
return self._dest[self._result] if self._result is not None else self._dest
@dest.setter
def dest(self, value):
self._dest = value
# subclass Machine to use DependingTransition instead of standard Transition
class DependingMachine(Machine):
transition_cls = DependingTransition
def func(value):
return value
m = DependingMachine(states=['A', 'B', 'C', 'D'], initial='A')
# define a dynamic transition with a 'depends_on' function which will return the required value
m.add_transition(trigger='shuffle', source='A', dest=({1: 'B', 2: 'C', 3: 'D'}), depends_on=func)
m.shuffle(value=2) # func returns 2 which makes the transition dest to be 'C'
assert m.is_C()
Note that this solution has some drawbacks. For instance, the generated graph might not include all possible outcomes.
Machine.get_triggers
should only show valid transitions based on some conditions.This has been requested here. Machine.get_triggers
is usually quite naive and only checks for theoretically possible transitions. If you need more sophisticated peeking, this PeekMachine._can_trigger
might be a solution:
In [ ]:
from transitions import Machine, EventData
from functools import partial
class Model(object):
def fails(self, condition=False):
return False
def success(self, condition=False):
return True
# condition is passed by EventData
def depends_on(self, condition=False):
return condition
def is_state_B(self, condition=False):
return self.state == 'B'
class PeekMachine(Machine):
def _can_trigger(self, model, *args, **kwargs):
# We can omit the first two arguments state and event since they are only needed for
# actual state transitions. We do have to pass the machine (self) and the model as well as
# args and kwargs meant for the callbacks.
e = EventData(None, None, self, model, args, kwargs)
return [trigger_name for trigger_name in self.get_triggers(model.state)
if any(all(c.check(e) for c in t.conditions)
for ts in self.events[trigger_name].transitions.values()
for t in ts)]
# override Machine.add_model to assign 'can_trigger' to the model
def add_model(self, model, initial=None):
super(PeekMachine, self).add_model(model, initial)
setattr(model, 'can_trigger', partial(self._can_trigger, model))
states = ['A', 'B', 'C', 'D']
transitions = [
dict(trigger='go_A', source='*', dest='A', conditions=['depends_on']), # only available when condition=True is passed
dict(trigger='go_B', source='*', dest='B', conditions=['success']), # always available
dict(trigger='go_C', source='*', dest='C', conditions=['fails']), # never available
dict(trigger='go_D', source='*', dest='D', conditions=['is_state_B']), # only available in state B
dict(trigger='reset', source='D', dest='A', conditions=['success', 'depends_on']), # only available in state D when condition=True is passed
dict(trigger='forwards', source='A', dest='D', conditions=['success', 'fails']), # never available
]
model = Model()
machine = PeekMachine(model, states=states, transitions=transitions, initial='A', auto_transitions=False)
assert model.can_trigger() == ['go_B']
assert set(model.can_trigger(condition=True)) == set(['go_A', 'go_B'])
model.go_B(condition=True)
assert set(model.can_trigger()) == set(['go_B', 'go_D'])
model.go_D()
assert model.can_trigger() == ['go_B']
assert set(model.can_trigger(condition=True)) == set(['go_A', 'go_B', 'reset'])
There is a high chance that your model already contained a trigger
method or methods with the same name as your even trigger. In this case, transitions
will not add convenience methods to not accidentaly break your model and only emit a warning. If you defined these methods on purpose and want them to be overrided or maybe even call both -- the trigger event AND your predefined method, you can extend/override Machine._checked_assignment
which is always called when something needs to be added to a model:
In [ ]:
from transitions import State, Machine
class StateMachineModel:
state = None
def __init__(self):
pass
def transition_one(self):
print('transitioning states...')
def transition_two(self):
print('transitioning states...')
class OverrideMachine(Machine):
def _checked_assignment(self, model, name, func):
setattr(model, name, func)
class CallingMachine(Machine):
def _checked_assignment(self, model, name, func):
if hasattr(model, name):
predefined_func = getattr(model, name)
def nested_func(*args, **kwargs):
predefined_func()
func(*args, **kwargs)
setattr(model, name, nested_func)
else:
setattr(model, name, func)
states = [State(name='A'), State(name='B'), State(name='C'), State(name='D')]
transitions = [
{'trigger': 'transition_one', 'source': 'A', 'dest': 'B'},
{'trigger': 'transition_two', 'source': 'B', 'dest': 'C'},
{'trigger': 'transition_three', 'source': 'C', 'dest': 'D'}
]
state_machine_model = StateMachineModel()
print('OverrideMachine ...')
state_machine = OverrideMachine(model=state_machine_model, states=states, transitions=transitions, initial=states[0])
print('state_machine_model (current state): %s' % state_machine_model.state)
state_machine_model.transition_one()
print('state_machine_model (current state): %s' % state_machine_model.state)
state_machine_model.transition_two()
print('state_machine_model (current state): %s' % state_machine_model.state)
print('\nCallingMachine ...')
state_machine_model = StateMachineModel()
state_machine = CallingMachine(model=state_machine_model, states=states, transitions=transitions, initial=states[0])
print('state_machine_model (current state): %s' % state_machine_model.state)
state_machine_model.transition_one()
print('state_machine_model (current state): %s' % state_machine_model.state)
state_machine_model.transition_two()
print('state_machine_model (current state): %s' % state_machine_model.state)
In [ ]: